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Theory of Rotational Dynamic Measurement of Plastics 

D. H. KAELBLE, Central Research Laboratory, Minnesota Mining and 
Manufacturing Company, St. Paul, Minnesota 

synopsis 
A theory which postulates a condition of combined constraints of constant stress and 

constant strain is developed for the rotating cantilever beam measurement of dynamic 
mechanical properties of rigid plastim. The theory provides operating equations for the 
rotating beam instrument of Maxwell equipped with a b d  strain gage dynamometer. 
The storage component of the dynamic Young’s modulus E’ = 64 L 8 F 1 / 3 ~ d 4 ( A X t  - 
K J I )  and the mechanical lose tangent tany = [ F , ( h X t  - KIFI) + K z F I F ~ ] / [ F I ( A X ~  - 
KIFl) - Kz(F2)2] are expressed in terms of the length L and diameter d of the circular 
rod specimen; the bending spring constants of the biaxial dynamometer K1, K z ;  the 
imposed dynamometer displacement ( A X t ) ;  and the cantilever beam storage and loss 
response forces F1, Fz. 

Introduction 
The advancement of instrumental techniques for dynamic mechanical 

properties of plastics has made analysis of viscoelastic properties of rigid 
polymers under sinusoidally oscillating stress and strain a practical and 
important part of mechanical property characterization. Two versatile 
techniques for measurement of these dynamic properties of plastics have 
been described by Maxwell.lJ Both of these techniques involve the 
flexural deformation of a rotating cantilever beam. The rotating canti- 
lever beam measurement is a direct stress-strain method which provides a 
broad and continuously variable frequency range under conditions of con- 
stant imposed stress1 or strain.2 

The chuck mounted cantilever beam specimen of circular cross section is 
illustrated in Figure 1A under a static flexural load FI and deflection 
AX,. The constant dynamic stress condition is illustrated in Figure l B ,  
which presents an end view of the rotating specimen. In  Figure 1B the 
applied constant force Fl imposes the constant stress condition, and the 
respondant deflections AXs and AY8 characterize the sample dynamic 
properties. The applied sample deflection ( AX8) characterizes the con- 
stant strain condition in Figure l C ,  where the resultant forces F1 and FZ de- 
fine the dynamic response of the specimen. 

The theoretical examination discussed here recognizes the conditions 
represented in Figures 1B and 117 as special cases in a more general condi- 
tion of dynamic stress and strain in a rotating cantilever beam specimen. 
Definition of this more general stress-strain condition is necessary properly 
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PLAN VIEW END VIEW END VIEW 
(4 ( 8 )  (c) 

Fig. 1. Diagrams of ( A )  cantilever beam of circular crow section supported in a chuck 
at one end and statically deflected at the free end a distance AXs by a force F l ;  ( B )  
rotating ( 0 )  free end of the cantilever beam under a constant stress imposed by force 
F1 and producing resultant in-phase deflection AX, and ouhf-phase deflection AY8; 
(C) Rotating ( 0 )  free end of the cantilever beam under a constant strain (AX,) and pro- 
ducing resultant in-phase force PI and out-of-phase Force Pn. 

to isolate the true specimen response in terms of dynamic properties from 
the gross measurement result. This general definition is also useful in in- 
strument design where an objective may be either a constant stress or con- 
stant strain type measurement condition. In our laboratories the equa- 
tions developed here form part of a digital computer program utilized in 
processing data from this measurement. 

Definition of Combined Constraints 

Each of these pure conditions of constant stress and constant strain may 
be considered as special cases of a more general situation of stress and strain 
within the rotating beam which can be termed a condition of combined con- 
straints. These two special conditions and the more general condition of 
stress and strain are schematically depicted in Figure 2 in terms of the ex- 
ternal forces and deflections and internal stress and strain profiles viewing 
the free end face of the rotating beam. 

As Figure 2 indicates, the condition of constant stress causes a rotation 
of the neutral axis of internal strain through some lead angle 6 b  in advance 
of the constrained neutral axis of internal stress imposed by the force Fl. 
Conversely the constant strain condition rotates the neutral axis of internal 
stress through some lag angle 6, back from the constrained neutral axis of 
internal strain imposed by the displacement AXs. The general condition 
of combined constraints can be viewed as the linear combination effect of 
imposing a condition of both constant stress and constant strain. The 
resultant effect upon internal stress and strain is a lead angle 6o for the 
neutral axis of internal strain and a lag angle of 6, for the neutral axis of 
stress away from a neutral axis defining the neutral axes of the pure single 
constraint conditions of both constant stress and constant strain. The 
resultant rotation of the neutral strain from neutral stress axis is then the 
angular sum, 6 = 6, 4- 6 b .  The defining relations for the neutral axis 
rotations in terms of the definition of the dynamic Young’s modulus: 

E*(o) = E’(o) + iE”(w) i = (-1)W (1) 
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EXTERNAL STRESS 
f STRAIN AT FREE END 

where E* is the complex dynamic modulus, E' the storage (or in-phase) 
component, and Elf  the loss (or out-of-phase) component a t  some constant 
frequency o, are presented also in Figure 2. 

Maxwell has stated the advantagcs of the rotating beam measurement 
that approaches the condition of constant strain measurement. This con- 
dition is accomplished by applying the deflection to the rotating beam free 
end through a biaxial load sensing strain gage by dynamometer. Several 
instruments of this type are in operation in our laboratorie~.~ Similar 

INTERNAL 
STRESS )STRAIN 

CONSTANT STRAIN y-/ 
t A x s l  A+ 

SYMBOL MEANING 

DEFININ~ 
RELATION 

tan(6a+6b)= - €1 
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Fig. 2. Geometry of internal stress and strain. 

apparatus is also commercially available. This definition of combined 
constraints will be developed with respect to the operating equations of 
this type of instrument. Since the dynamometer acts in a mechanical 
series fashion with the sample, the combined interaction of dynamometer 
and sample must be considered in this analysis. In  other words, we con- 
sider the fact that the measurement deflection A X t  is imposed upon the 
dynamometer and acts through the dynamometer upon the sample. The 
total deflection A X t  is then composed of both an instrument and a specimen 
deflection. 
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Theory 
Several simplifying assumptions are made concerning the stresses and 

strains within the rotating cantilever beam: (1) the sample is strained in 
the region of linear stress-strain response; (2) bending is uniform through 
the length of the sample; (3) no torsional strain is present. 

Following the geometry of the schematics of Figure 1 we establish by con- 
vention: (a) all in-phase ( X  axis) components of force and displacement are 
positive; (b)  all out-of-phase (Y  axis) components of force and displace- 
ment are negative for clockwise rotation and positive for counter clockwise 
rotation. 

Table I presents the nomenclature applied in the development of the 
operational equations. From the geometry of the system: 

TABLE I 
Nomenclature 

Definition 

Total X-axis deflection of rotating beam and 

X-axis deflection of beam free end 
X-axis deflection of dynamometer 
Y-axis deflection of sample free end 
Y-axis deflection of dynamometer 
X-ax& component of bending force 
Y-axis component of bending force 
X-axis spring constant of dynamometer 
Y-axis spring constant of dynamometer 
Moment of inertia of a rod of circular cro68 Mction 

about its neutral axis 
Diameter of circular rod 
Length of cantilever beam sample 
Complex Young's modulus 
Absolute Young's modulus 
Storage (in-phase) modulus 
Loss (out-of-phase) modulus 
Loss tangent 

dynamometer 

w Frequency 

AXt = AX8 + A X ,  
AY, = A Y ,  

From the elastic character of the dynamometer: 
AX, = KiFi 
AY, = KzFz 

(4) 

(5) 
From the standard bending equation for a circular cross-sectioned canti- 
lever beam : 

A X ,  = F1La/3E'I (6) 
= 64FiLa/3rE'd4 
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where 

I = ?ra4//64 

E‘ = 64L3Fi/3~d4(AX‘ - KiFi) 

Combining eqs. (2), (4), and (6) we obtain upon rearrangement: 

(7) 
which permits direct calculation of the storage modulus El knowing the 
measurement variables F1 and AX,. 

From the previously defined condition of combined constraints we may 
write eq. (8) for the loss tangent, tan 6: 

tan 6 = tan (6, + 6,) (8) 
= (tans, + tansb)/(l - tans, tanSb) 

where 

tan 6, = F2/F1 (9) 

t a n &  = AY,/AX, (10) 

(11) 

(12) 

AY, = KzFz (13) 

Substituting eqs. (9) and (10) into eq. (8) we obtain: 

tan 6 = (FzAX8 + F1AY,)/(FlAX8 - FzAY8) 

A x 8  = AX, - Kip1 

Substituting eq. (4) into eq. (2) we obtain upon rearrangement: 

Substituting eq. (5) into eq. (3) we obtain: 

Upon substitution of eqs. (12) and (13) into eq. (11) we obtain the desired 
expression for the loss tangent: 

tan 6 = [Fz(AX, - K91) + KzF~FzI/[FI(AX, - K91) - Kz(F2j2] (14) 

Equation (14) then permits direct calculation of the loss tangent tan 6 in 
terms of the experimental variables AXt, FI, and Fz. 

Since the X-axis and Y-axis forces measured by the dynamometer are 
xdinarily recorded in terms of scale units it is convenient to introduce the 
following proportionality relations : 

where P1 and Pz are the recorder deflection in scale units and 41 and & are 
the conversion constants relating them to their respective force values. 
Substituting eqs. (15) and (16) into eqs. (7) and (14), respectively we may 
write the operating equations of the rotating beam instrument as follows: 

E’(w) = 64La+iPi/3~d4(AXt - KItfqPi) (17) 
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tan GJ) = [&P2(AXt - K141P1) + K & I & P ~ P ~ I / [ ~ I P ~ ( A X ~  - 

Ki4iPi) - K z ( @ z ) ~ ]  (18) 

E”(w) = E‘tan 6 (19) 

(20) IE*(w)I = [(E’I2 + (E”)2]1’2 

Equations (17) and (18) completely define the dynamic mechanical prop- 
erties of the rotating cantilever beam at  some constant frequency w and 
temperature T. These calculated parameters E’ and tan 6 may be utilized 
through eqs. (18) and (19) further to express these dynamic mechanical 
properties based on the rotating cantilever beam measurements in terms of 
standard nomenclature provided for linear viscoelastic rnaterials.5 

Discussion 

From the preceding theory we may now examine the design criteria for 
constant stress and constant strain type dynamic measurement. Addi- 
tionally we may examine the character of instrument response which must 
exist during the course of dynamic measurement through a glass-rubber 
transition region where dynamic moduli IE*l and E’ change by magnitude 
factors of 100 to 10,000. 

Combining eqs. (4) and (5) and differentiating we obtain: 

d(AX,)/d(AX,) = K1(3E’I/L3) (21) 

tan &/tan 6, = Kz  (3E’I/L3) (22) 

We may define an approach to a condition of constant stress or constant 
strain measurement in terms of eqs. (21) and (22). These criteria and the 
instrument design constants which provide an approach, to within a 1% 
precision, to a pure constant stress or constant strain type measurement are 
indicated in Table 11. 

Several points of information may be drawn from Table 11. Apparently 
for either constant stress or strain measurement the X and Y axis spring 
constants should be of equivalent magnitude, thus K1 N K2. Table I1 also 

and eqs. (6), (9), and (10) we may write: 

TABLE I1 
Criteria for Constant Stress or Constant Strain Dynamic Measurement 

Prerequisite to condition 
Measurement fulfillment within Associated instrument 

condition 1 yo precision design criteria 

Constant stress 
Storage modulus d ( A X , ) / d ( A X , )  3 ?OO.O K1 3 100 (L3 /3  E’I) 
Loss tangent Kz 3 100 (L3 /3  E‘Z) tan &,/tan 6, 3 100.0 

Constant strain 
Storage modulus d ( A x , ) / d ( A x , )  6 0.01 KI 6 0.01 (L3/3 E’I) 
Loss tangent tan &/tan 6 0.01 K2 6 0.01 (L3/3 E’I) 
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indicates the spring constants K1, Kz' for a constant stress measurement 
must be 10,000 times higher than for a constant strain measurement for a 
given sample geometry and storage modulus. Thus the dynamometer de- 
sign required for either type of measurement is highly specialized to the 
type of measurement selected. For constant stress measurement the dy- 
namometer has a soft response compared to the sample. Conversely, 
constant strain measurement requires a high stiffness compared to the 
sample. 

Table I1 also indicates how the measurement condition, with fked values 
of K1, K2,  varies with changes in the dynamic storage modulus E' that occur 
with temperature or frequency variation. An instrument designed for 
constant stress type measurement of glassy state response may well produce 
a constant strain type measurement as the storage modulus E' diminishes 
with increased temperature and decreased frequency. 

A constant stress type instrument must then be designed, by the criteria 
of Table 11, relative to lowest value of E' one anticipates encountering. A 
constant strain type instrument must preselect values of K1 and Kz with 
respect to the highest values of E' one may encounter. This manner of 
selecting K 1  and K2 will preserve the intended character of measurement 
even though the storage modulus E' and other associated dynamic me- 
chanical properties of the material change. 

It is important to recognize here that design considerations of the 
instrument can only direct the mode of measurement toward a constant 
stress or strain type measurement. Either type of measurement in its pure 
form is difficult to accomplish. It is advantageous, therefore, to recognize 
the real condition of combined constraints and to apply eqs. (17-20) in the 
calculation of results. 
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Rbsumb 

On a developpe une th6orie qui postule un &art combine B la tension constante et B la 
deformation constante pour la mesure des proprietbs mbcaniques dynamiquas des plas- 
tiques rigides B l'aide d'appareil B potence tournante. Cette thborie propose des Bqua- 
tions applicables B l'appareil de Maxwell &quip6 d'une jauge de contrante biaxiale. La 
partie reelle du module de Young dynamique E' = 64 L3F1/3*d4(AX, - K 9 1 )  et la 
tangente d'amortissement m6canique tan y = [ F z ( A X ,  - k F 1 )  + KzFIFz]/[F1(AXt - 
KIFl) - K2(F2)2] sont exprimes en termes de longuer L et de diambtre d de la lame cir- 
culaire; des constantes 6lastiques de flexion du dynamometre biaxial KI, K2; du d6- 
placement impose au dynamometre ( A X c ) ;  et des forces de reponse F1, FZ B la dissipa 
tion et B la conservation. 
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Zusammenfassung 

Eine Theorie, welche eine Bedingung kombinierter Anwendung konstanter Spannung 
und konstanter Verformung postuliert, wurde fiir die Messung der dynamisch- mechan- 
ischen Eigenschaften starrer Kunststoffe mit dem rotierenden, freitragenden Stab ent- 
wickelt. Diese Theorie liefert Arbeitsgleichungen fur das Rotationsstabinstrment von 
Maxwell, das mit einem biaxial- verformungsmessenden Dynamometer ausgeatattet 
wurde. Der Imaginiirteil des dynamischen Youngmodul E’ = 6 4 L s F 1 / 3 ~ d 4  ( A X t  - 
K I F I )  und der mechanische Verlustattangense tan y = [Fz(AX,  - K J I )  + K2F1F2]/ 
[F1(AXt - KIFI)  - K2(Fz)7 werden durch die Lange L und den Durchmesser d der 
kreisstabformigen Probe, die Biegefederkonstanten des biaxialen Dynamometers KI ,  Kz, 
die angewandte Dynamometerverschiebung (AX,) und die Imaginiir und Verlustreak- 
tionskrafte FI,  Fz des freitragenden Stabesausgedruckt. 
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